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Abstract

In this paper, we present ideas and procedure to extend the AUSM-family schemes to solve flows at all speed regimes.
To achieve this, we first focus on the theoretical development for the low Mach number limit. Specifically, we employ
asymptotic analysis to formally derive proper scalings for the numerical fluxes in the limit of small Mach number. The
resulting new scheme is shown to be simple and remarkably improved from previous schemes in robustness and accuracy.
The convergence rate is shown to be independent of Mach number in the low Mach number regime up to M1 = 0.5, and it
is also essentially constant in the transonic and supersonic regimes. Contrary to previous findings, the solution remains
stable, even if no local preconditioning matrix is included in the time derivative term, albeit a different convergence history
may occur. Moreover, the new scheme is demonstrated to be accurate against analytical and experimental results. In sum-
mary, the new scheme, named AUSM+-up, improves over previous versions and eradicates fails found therein.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Today, computational fluid dynamics (CFD) codes are becoming a commodity used regularly for engineer-
ing analysis and even in the design process. Commercial codes have now been steadily employed, not only in
industry but also in academia and government laboratories. CFD has been viewed by some as a matured dis-
cipline, thus requiring no further development. This view is further reinforced by the rapid advancement of
ever faster and larger-memory computer processors, making computation of complex geometry and flow
physics tractable and affordable. Hence, CFD no longer belongs to experts, but in fact is practiced largely
by generalists. It is arguable that this advancement should be credited to those experts who have devoted
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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considerable efforts worrying about various facets of a numerical solution, such as accuracy, efficiency,
stability, turbulence modeling, grid generation, etc.

As the usage of CFD becomes increasingly routine, it becomes even more prudent that attention is paid to
developing a numerical scheme that is reliable for as wide a range of applications as physical modelings in the
codes allow. Hence, we will emphasize the importance of reliability of computed solutions, which is a direct
consequence of reliable numerical schemes and physical modelings. Here, reliability in this paper implies
robustness, accuracy, and generality. In other words, the numerical scheme must be able to yield stable
and accurate solutions under various flow conditions. Also, as the regime of applicability is extended, e.g.,
to different sets of conservation laws, stability and accuracy should still be maintained. We shall describe in
this paper our recent effort towards attaining a reliable general numerical flux function.

One of the important extensions is to allow the application of the existing compressible flow codes to reli-
ably predict low speed flows. It is well known that two major deficiencies occur when using a standard com-
pressible code to calculate low speed flows: (1) extremely slow or stalled convergence and (2) grossly inaccurate
solutions. These two phenomena are not related because the first one originates at the continuum level and is
tied to the form of governing equations being solved, irrespective of the spatial discretization schemes used.
However, the second deficiency is inherently tied to the flux scheme employed and is the subject of this paper.

In the 1990s, important developments have been made, such as those by Turkel [1], Choi and Merkle [2],
Weiss and Smith [3] and Van Leer et al. [4], to devise a local preconditioner to alter the characteristics of the
governing equations. In these cited studies, both the central differencing and the Roe schemes [5] have been
used in the spatial discretization. Modifications of the AUSM-family schemes have also been proposed, result-
ing in a host of successful applications to not only low Mach flows [6–10], but also to multi-phase flows [11–
14]. Among these studies, an interesting concept, so-called numerical speed of sound [8], was employed to
conveniently rewrite the AUSM-family flux formulas. Despite successes in practice, the pressure split function
reveals a discontinuity at M = 0 unless a cut-off Mach number was included. Although this parameter was
also used in all of the preconditioners mentioned above, it is nevertheless desirable to have this parameter
as small as the characteristic value in the flow, such as the free stream Mach number, without being limited
to a preset value.

Another objective of the present investigation is to enhance the robustness of the previous AUSM+ so that
the convergence rate of calculations is independent of Mach numbers for low speed flows. And for other flow
speed regimes, the convergence rate should remain at least as good. Moreover, the solution accuracy should be
maintained for all speed ranges.

To achieve these objectives, we will derive a new scheme employing the asymptotic analysis under the limit
of M ! 0.

The paper is organized as follows. We will begin by reviewing the existing AUSM schemes and their capa-
bilities and shortcomings, thereby providing the motivation of the present study. Then, we describe in detail
the development of the new scheme, called AUSM+-up, and demonstrate its advantageous features with a ser-
ies of benchmark problems. Next, to extend the capabilities to the low Mach number regime, asymptotic anal-
ysis is employed to derive proper scaling and final flux formulas. Finally, the efficacy of the new scheme is
demonstrated for various types of problems, along with comparisons against theoretical and experimental
results.

2. Development of a new AUSM numerical flux: AUSM+-up

Our experiences have indicated that the key to achieve the above intended goals lies in the design of the
inviscid fluxes.1 Hence, let us begin by considering the inviscid equations written in vector form
1 It i
Qt þr � F ¼ 0; ð1Þ

where Q and F are the vectors of usual conservative variables and inviscid fluxes, respectively.
s understood that the ultimate test of the scheme’s capability will be done on the Navier–Stokes equations.
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It is sufficient to consider only the 1D flux for now, but the extension to multi-dimensions follows the stan-
dard procedure of direction splitting. Hence, we shall take Q = (q,qu,qE)T and F = (qu,qu2 + p,qu H)T and
perfect gas.

The extension to other system of conservation laws can also be made, for example, for the two-fluid multi-
phase flow equations [14].

Before describing the new development for the AUSM-family schemes, it is instructive to first review its
most current version.

As a first step common in all AUSM schemes, the inviscid flux is explicitly split into convective and pressure

fluxes:
F ¼ FðcÞ þ P ¼ _m~wþ P. ð2Þ

It is interesting to note that the convective flux comprises a common scalarmass flux _m, but having the sense of
flow direction, for the entire system of conservation laws and a vector quantity ~w that is convected by _m, in
which
_m ¼ qu; ~w ¼ ð1; u;HÞT. ð3Þ

The pressure flux contains only the pressure term,
~P ¼ ð0; p; 0ÞT. ð4Þ

It is possible to write a numerical flux, mimicking the expression at the continuum level Eq. (2), in terms of a
common mass flux,
f1=2 ¼ _m1=2
~wL=R þ p1=2; ð5Þ
where ~wL=R will be determined in a simple upwind fashion,
~wL=R ¼
~wL if _m1=2 > 0;

~wR otherwise;

(
ð6Þ
Clearly, the main tasks are to define the mass and pressure fluxes, _m1=2 and p1/2, which shall be described in
detail, respectively, in this paper.

First, we shall digress briefly to discuss motivations of this study. Notwithstanding several good attributes
found in the AUSM [15] and AUSM+ schemes [16], the single most notable deficiency has been the pressure
oscillations observed along the grid direction in which there exists a very small velocity component. An exam-
ple is in the direction normal to a boundary layer. Fig. 1 shows the pressure distribution of two colliding
streams, between which a stagnant region immediately forms and expands with time. Overshoots appear at
this stagnant region, precisely because of the lack of a dissipative mechanism in the pressure field.

This can be remedied with two approaches. Previously, we viewed it as a problem pertaining to the low
Mach number flow and hence solved the problem by introducing the concept of numerical speed of sound
(see [7,8]) such that the Mach numbers are rescaled to become on the order of unity over the range of subsonic
speeds. This approach in the framework of AUSM schemes overcomes, in one formulation, two problems: (1)
Fig. 1. Colliding shocks problem, ML = �MR = 25.
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removal of pressure oscillations in the low speed regions, even when the flow speed in the bulk of domain may
not be small and (2) extension of compressible flow formulation to solving flows where the entire region is at
low Mach number.

The other approach is what we propose in this paper. The aim is to tackle the pressure-oscillations problem
at the outset, irrespective of whether the flow speed is low. Then we will deal with the specific issues associated
with low speed separately. This approach has the advantages of being simpler and having a basic scheme free
of these oscillations at all speeds.

2.1. Mass flux

The mass flux at the interface denoted by subscript ‘‘1/2’’ has the form of
_m1=2 ¼ u1=2qL=R ¼ a1=2M1=2qL=R; ð7Þ
where u1/2 is the convective velocity and qL/R is the density convected by u1/2. The cell interface straddles two
neighboring cells labeled by subscripts ‘‘L’’ and ‘‘R’’, respectively, namely to the left and right of the interface.
Since the convective flux is associated with the linear field of the system of conservation laws, the interface
density is dictated by the direction of u1/2 in accordance with the idea of upwinding (convecting). That is,
qL=R ¼
qL if u1=2 > 0;

qR otherwise.

�
ð8Þ
It turns out more convenient to use Mach number as a working variable and u1/2 will be expressed in terms of
polynomial functions of eigenvalues M ± 1 associated with the nonlinear fields so that upwind switching can
be automatically formulated at the sonic condition M = ±1. Thus, rewriting the above equation gives
_m1=2 ¼ a1=2M1=2

qL if M1=2 > 0;

qR otherwise.

�
ð9Þ
Clearly, the next question is how to define the interface speed of sound a1/2 and Mach number M1/2. As will
become evident later, there can be remarkable possibilities for the definition of the speed of sound a1/2. Spe-
cially defined forms of a1/2 can give additional features.

To properly scale the numerical dissipation with the flow speed, the concept of numerical speed of sound
was proposed in [8], in which we expressed it conveniently in terms of a scaling function fa as:
~a1=2 ¼ fað �M ;MoÞa1=2. ð10Þ
The scaling factor fa was given several forms, e.g., the one derived from the local preconditioned system [1–3],
V .0 : fað �M ;MoÞ ¼
½ð1�M2

oÞ
2 �M2 þ 4M2

o�
1=2

1þM2
o

; ð11Þ
with the reference Mach number,
M2
o ¼ minð1;maxð �M2;M2

coÞÞ; ð12Þ

where the mean local Mach number and cut-off Mach number are
�M2 ¼ 1
2
ðM2

L þM2
RÞ and M co ¼ jM1; j ¼ Oð1Þ. ð13Þ
The cut-off parameterMco is nominally specified as O(M1) and should avoid becoming zero, which could lead
to a floating point error. For a problem where no obvious representative Mach number can be identified, such
as the shock tube problem, other characteristic parameters must be introduced.

We remark that it is not necessary to express the scaling factor with Eq. (11), so long as similar qualitative
properties are maintained. In fact, a simpler form is possible,
V .1 : faðMoÞ ¼ Moð2�MoÞ P 0 � 2Mo; as Mo ! 0. ð14Þ

The behavior of these two formulas is displayed in Fig. 2. The effect of including the cut-off number is seen to
introduce a non-zero fa at M = 0. Since both formulas behave quite similarly and we found little differences of
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their effects on the convergence rate and accuracy, Eq. (14) will be used, because of its simplicity, in all cal-
culations presented in this paper.

Utilizing the numerical speed of sound ~a1=2, a pair of ‘‘left’’ and ‘‘right’’ Mach numbers can be defined
accordingly,
~ML=R ¼ uL=R
~a1=2

¼ ML=R

fa
. ð15Þ
They would be used as ‘‘working variables’’ in the split functions of Mach number and pressure that will be
given later. For convenience, this version is denoted as AUSM+-a, because of the central role played by ~a1=2.
This pre-processing of Mach numbers has been shown to be effective in achieving an all-speed formulation of
the AUSM-family schemes [6–12].

However, current effort is aimed at making the procedure simpler and more robust, while simultaneously
improving its accuracy. A main objective is to eliminate the singularity caused by the division by fa if it were
allowed to become zero. Hence we shall abandon the use of ~a entirely and find another way to attain desired
features. We shall begin by eliminating the step of pre-processing Mach numbers and simply use the unscaled
interface speed of sound to define ML/R,
ML=R ¼ uL=R
a1=2

; ð16Þ
as the working variables in the scheme.
We can now set the interface Mach number in terms of ML and MR as:
M1=2 ¼ Mþ
ðmÞðMLÞ þM�

ðmÞðMRÞ þMp. ð17Þ
The split Mach numbers M�
ðmÞ are polynomial functions of degree m (= 1,2,4), as given in [16]:
M�
ð1ÞðMÞ ¼ 1

2
ðM � jM jÞ; ð18Þ

M�
ð2ÞðMÞ ¼ �1

4
ðM � 1Þ2 ð19Þ
and
M�
ð4ÞðMÞ ¼

M�
ð1Þ if jM j P 1;

M�
ð2Þð1� 16bM�

ð2ÞÞ otherwise.

(
ð20Þ
The pressure diffusion term Mp, introduced to enhance calculations of low Mach number or multi-phase flow,
is defined to be:
Mp ¼ �Kp maxð1� r �M2; 0Þ pR � pL
q1=2a

2
1=2

; r 6 1; q1=2 ¼ ðqL þ qRÞ=2 ð21Þ
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with 0 6 Kp 6 1. The factor maxð1� r �M2Þ P 0 is introduced to replace a similar function DM used in the
previous low Mach number formulations [7,8],
DM ¼ ½Mþ
ð4Þ �Mþ

ð1Þ�ðMLÞ � ½M�
ð4Þ �M�

ð1Þ�ðMRÞ P 0. ð22Þ
Both functions behave qualitatively in a similar manner. They monotonically increase from zero as |M| P 1 to
a maximum value at M = 0, as shown in Fig. 3 (the difference in magnitude is immaterial because it can be
absorbed in the co-efficient Kp). Since the current one is simpler, it has been used in all calculations throughout
this paper. The factor maxð1� r �M2; 0Þ becomes activated only in the region of M2

6 1/r with r 6 1.
We remark that this pressure diffusion term may not provide sufficient dissipation at low Mach number

because Dp = pR � pL will be small and in fact is O(M2)� 1. Hence, a close examination of this aspect is
required. It is a main focus of this investigation, as will be shown in the next section on Extension for All
Speeds, in which we shall utilize the asymptotic analysis to derive a proper scaling for Mp.

2.2. Pressure flux

In all the AUSM-family schemes, a general interface pressure formula [16] is used as a starting point,
p1=2 ¼ Pþ
ðnÞðMLÞpL þP�

ðnÞðMRÞpR; ð23Þ
where n = 1,3, or 5 corresponds to the degree of the polynomials P�, as in M�. The fifth degree polynomials
are preferred because they are found to yield more accurate solutions. They are also expressed in terms of split
Mach number functions, as given by
P�
ð5ÞðMÞ ¼

1
M M�

ð1Þ if jM j P 1;

M�
ð2Þ½ð�2�MÞ � 16aMM�

ð2Þ� otherwise.

(
ð24Þ
Notice that the pair of parameters a, b were set previously to be, respectively (3/16,1/8) under the conditions
described in [16]. In next section, we will re-examine the definition of a and b with additional requirements for
the low Mach number flow.

The above pressure flux was recently modified [20] by adding a velocity difference (diffusion) term pu, sim-
ilar to the interface Mach number given in Eq. (17),
p1=2 ¼ Pþ
ð5ÞðMLÞpL þP�

ð5ÞðMRÞpR þ pu; ð25Þ
where
pu ¼ �KuP
þ
ð5ÞðMLÞP�

ð5ÞðMRÞðqL þ qRÞa1=2ðuR � uLÞ; ð26Þ
Fig. 3. Mach-number factors in Mp(r = 1).



M.-S. Liou / Journal of Computational Physics 214 (2006) 137–170 143
and the coefficient 0 6 Ku 6 1. It is noteworthy that the added velocity diffusion term was inspired by approx-
imating the characteristic relations dp ± qa du = 0 to yield,
p1=2 ¼ 1
2
ðpL þ pRÞ � 1

2
ðqaÞ1=2ðuR � uLÞ ð27Þ
for ML, MR 6 1. The coefficient Pþ
ð5ÞðMLÞP�

ð5ÞðMRÞ simply switches off pu as the flow becomes supersonic,
resulting in one-sided upwinding. It is of interest to note that several members of the AUSM-family also have
a similar term, e.g., AUSMDV [25], AUSMPW+ [17] and LDFSS [7].

We call this version AUSM+-u where the suffix ‘‘u’’ is used to indicate that the velocity diffusion term is
included. By the same token, the scheme reads AUSM+-up when Mp is also included in Eq. (17). In other
words, what is added onto the AUSM+ [16] is simply both the Mp and pu terms to render it AUSM+-up.
The AUSM+-up is also denoted as the basic scheme in this paper. In Section 3, we shall add a further devel-
opment to make it uniformly valid for all speed regimes and some other features.

Let us first validate the efficacy of the basic scheme before turning to the development for low Mach num-
ber flows. For applications of the basic scheme to the solution of multi-phase multi-fluid equations, see [14]. In
this section, all results are of O(Dx) accurate unless stated otherwise.

2.3. Choice of interface speed of sound a1/2

2.3.1. Shock resolution
Similar to the AUSM+ scheme [16], it is also possible for the basic scheme to find an interface speed of

sound a1/2 such that a normal shock can be exactly resolved between two discontinuous states, even when both
Mp and pu are included. Interestingly, the same formula is valid here as well, i.e.,
a1=2 ¼ minðâL; âRÞ; where â ¼ a�2=maxða�; jujÞ. ð28Þ
Here, a* is the critical speed of sound evaluated when the local Mach number is unity. In the case of perfect
gas, this can be expressed in terms of total enthalpy,
a�2 ¼ 2ðc� 1Þ
cþ 1

Ht. ð29Þ
The result displayed in Fig. 4 demonstrates that a stationary shock is exactly preserved.

2.3.2. Entropy-satisfying property

Because of this exactness property of resolving a shock, no distinction between a (compression) shock or an
entropy-violating expansion shock can be made, as displayed in Fig. 5, where both the speed of sound given in
Fig. 4. Exact shock capturing.
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Fig. 5. Inverse shock problem showing violation of the entropy condition. Left: Eq. (28); Right: Roe splitting.
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Eq. (28) and the Roe flux splitting yield an expansion shock, instead of the entropy-satisfying exact solution
shown with the solid line.

Interestingly, a slight modification of Eq. (28) will just cure the problem by simply incorporating the infor-
mation of flow direction, which can be readily accomplished by inserting a ‘‘�’’ sign in uR,
A

--
âL ¼ a�2=maxða�; uLÞ; âR ¼ a�2=maxða�;�uRÞ. ð30Þ

The initial entropy-violating jump states now turn into a smooth expanding flow, as seen in Fig. 6. It is note-
worthy that the basic scheme, AUSM+-up, gives a smoother transition through the sonic point than the
Godunov’s exact Riemann solver. The same advantageous feature also shows up in the solution of a shock
diffracting around a sharp corner (Fig. 15, shown later in this section).
Exact Riemann Solver  CFL=1.00    N= 100
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Fig. 6. Inverse shock problem showing the entropy-satisfying property. Left: Eq. (30); Right: Godunov method.
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2.4. Additional features of the basic scheme

In what follows immediately we will examine a series of 1D problems with different characteristics. The 1D
benchmark problems are of interest because one can precisely devise a problem mimicking a single or multiple
events occurring in more complex 3D problems. Hence, one can get a clear insight into the mechanism failing
a numerical scheme.

2.4.1. Monotonicity

First, we check on the solution of two colliding shocks moving atM = 25. As we saw in Fig. 1, the previous
AUSM+ scheme yielded overshoots behind the shock. Now, we see in Fig. 7 that the current AUSM+-up com-
pletely removes the overshoots and gives monotonic profiles. The Roe splitting results are also included for
comparison in which very slight overshoots are observed at the shoulder of the pressure profiles.

2.4.2. Positivity property

A test on the robustness of a scheme is the receding flow (vacuum) problem in which two parts of the fluid
begin to recede from each other at t = 0, subsequently resulting in a drop in pressure and density in the middle,
see Fig. 8. This is relevant to calculating rapid rarefaction seen in some flow problems, e.g., around a sharp
corner. The Roe scheme is known to fail in this test. The capability to preserve positivity in pressure and den-
sity in this vacuum problem has been demonstrated with the previous AUSM schemes; this new scheme again
maintains this capability.

2.4.3. Sonic point resolution

Now we examine a flow accelerating through the sonic point; its results are given in Fig. 9. The Roe split-
ting yields a discontinuous solution at the sonic point and the van Leer splitting [21] gives a slight glitch near
the sonic point. However, the current basic scheme yields a smooth transition through the sonic point if the
Fig. 7. Colliding shocks problem, ML = �MR = 25; comparison of results by the Roe splitting and AUSM+-up.



Fig. 8. Receding flow (vacuum) problem, ML = �MR = �2.

Fig. 9. Expansion through sonic point showing the results by the Roe and van Leer split
effect ofron the solution is given in the lower right figure.
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parameter r in Eq. (21) is chosen to be smaller than unity, see the enlarged view of the velocity distribution
near x = 5.0. Results of using different values of r are also shown in Fig. 9. It is clear that the smaller r
becomes, the smoother the result is. Note that r becomes effective only in the supersonic region, where
1 6 M2

6 1/r. The results show that it is just a simple fix for this sonic point problem by allowing the param-
eter r < 1. It is noted that the author is unaware of any case that is effected in a fundamental way, i.e., resulting
in a qualitatively different solution, by choosing a sensible range of values of r, e.g., 1/4 6 r < 1. A lower value
of r tends to make the supersonic region smoother. It is interesting to note that a lower bound of r may be set
by a requirement that the exact shock capturing property be preserved, namely
tings and AUSM+-up. A magnified view of the
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Mp ¼ 0 8 �M P 1 ) 1� r� �M2 ¼ 0; r�
6 r 6 1. ð31Þ
If �M2 ¼ ðM2
L þM2

RÞ=2 and using the Prandtl relation that is essential in achieving the exact shock capturing
property [16], we get a simple analytical expression for r*,
r� ¼ 2

1þ ðMLaL=a�LÞ
4
. ð32Þ
Fig. 10 shows that this lower bound r* drops quickly as ML increases. If the region activated by the factor
maxð1� r �M2; 0Þ is to be narrowed, then a value close to one should be chosen.

2.4.4. Contact discontinuities: stationary and slowly moving
First, it is easy to show the exact property of the AUSM-family schemes for capturing a stationary contact

discontinuity in which qL 6¼ qR, uL = uR = 0, pL = pR = p. The property of exactly capturing a contact discon-
tinuity has been proved for AUSM+ in [16] and it is easy to see that AUSM+-up reduces to AUSM+ because
the additional terms Mp and pu vanish accordingly. Next, we consider a slowly moving contact with the initial
conditions [25]: (q,p,u)L = (1,1,0.3aR), (q,p,u)R = (10,1,0.3aR). Fig. 11 presents the pressure and density
distribution in which a constant pressure and a sharp density jump are obtained across the contact.

2.4.5. Slowly impacting problem
Next, we shall consider the flow created by a slowly moving (M = 0.001) stream of fluid impacting on a

fluid at rest. This case is studied with the initial conditions: (q,p,u)L = (1,1,0.001aL), (q,p,u)R = (1,1,0).
The comparison of results from the Roe splitting and AUSM+-up against the exact solution is shown in
Fig. 10. Lower bound of r vs. ML.

Fig. 11. Slowly moving contact.
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Fig. 12. Here, the initial velocity jump is now separated by a middle region of constant properties. Results
from the Roe splitting are clearly in error, on the order of 0.1 M.

2.4.6. Slowly moving shock discontinuity
Unlike the contact discontinuity problem, this one is about the nonlinear discontinuity field. Roberts [22]

proposed a test problem to study numerical noises generated by a slowly moving shock with a speed much
smaller than the acoustic speed. It is known that several upwind schemes (Godunov [23], Roe [5], and HLLE
[24]) produce serious errors behind the shock [25]. Fig. 13 shows the comparison between solutions of the
Godunov and AUSM+-up schemes. The latter gives smoother profiles, with nearly constant strength of the
linear and the two nonlinear waves behind the shock.
Fig. 12. Slowly impacting problem showing results by the Roe splitting and AUSM+-up.

Exact Riemann Solver  CFL=0.50    N=4000
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Fig. 13. Slowly moving shock problem. Left: exact Riemann solver; Right: AUSM+-up.
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2.4.7. Shock instability: carbuncle phenomenon

Next, we investigate the so-called shock instability problem [26], first proposed by Quirk [27], in which a
plane shock wave is propagating along a channel of constant area. The grid at the mid-channel is perturbed
alternately at odd and even points with a small magnitude. For a certain class of numerical schemes, this grid
perturbation is sufficient to trigger numerical catastrophes, the so-called ‘‘carbuncle phenomenon’’, see discus-
sion in [26] for details. In Fig. 14, we show the result from the current scheme, it is clearly free of any anom-
alies, maintaining a clean profile along the shock and a monotone distribution along the channel.

We now consider another problem investigated by Quirk [27], namely, the diffraction of a plane shock wave
moving around a 90� corner, subsequently generating a series of complex shock diffraction, reflection, and
interaction patterns. This test problem can reveal several unit anomalies discussed above. For examples, a
scheme may produce shock instability at the vertical stem of the main shock or an entropy-violating expansion
fan emanating from the corner. Fig. 15 shows the computed results on a 71 · 71 grid from the Godunov and
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Fig. 14. Odd–even grid perturbation problem; CFL = 1, pR/pL = 7.1.
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Fig. 15. Supersonic shock diffraction problem. Left: exact Riemann solver; Right: AUSM+-up.
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the basic schemes. The former produces a discontinuous expansion fan, while the latter yields a smooth diver-
gent fan, indicating the satisfaction of the entropy condition.

A second-order accurate, fine grid solution shown in Fig. 16 was obtained on a 400 · 400 grid, with the
minmod limiter, revealing rich flow features that were grossly smeared by the coarse-grid solution. The
first-order accurate solution on this fine grid is also included for comparison; it completely smeared one of
the internal shocks and the reflected shock emanating from the triple point. It is evident from this example
that a higher-order accurate procedure is significantly useful. Grid-adaptive procedure was shown by Quirk
[27] to yield more fine features.

It should be noted that the present scheme does include a pressure diffusion term in the mass flux, but no
shock instability such as the carbuncle phenomenon has yet been detected. This, however, is not in conflict
with the Conjecture suggested in [26] in which the condition with the pressure diffusion term is only stated
as a necessary one for the shock instability to occur. Nevertheless, the fact that we have not observed this
numerical anomaly in the solutions presented above does not mean it will never happen under any circum-
stances. However, it simply confirms the robustness of the present scheme.

3. Extension of AUSM+-up for all speeds

As noted earlier, standard methods developed for compressible flows do not function properly when they
are applied to low Mach number flows. They are beset by convergence and accuracy problems. The first prob-
lem is associated with the disparity of convective and acoustic speeds as M ! 0. The standard approach to
rectify this problem is to modify the structure of eigenvalues at the continuum level through preconditioning
of the time derivative term. The second problem is closely related to the method of discretization. As M ! 0,
the pressure term is dominating the flow field, i.e., small perturbation in the pressure field results in zeroth-
order changes in the velocity field. Hence, proper scaling of pressure differences must be reflected in the numer-
ical scheme; otherwise, inaccuracy crops up and corrupts the solution.

While the concept of numerical speed of sound [8] mentioned earlier is intriguing and useful for dealing with
the accuracy problem, it however introduces non-smoothness in the pressure split functions. A discontinuity
appears, as shown in Fig. 17, at stagnation point M = 0 and is avoided only by the introduction of the cut-off
Mach number Mco used in Eq. (12). However, this cut-off Mach number in practice is prevented from becom-
ing too small by limiting it to a finite value, for example, by setting M co ¼ maxð0:3; 1

2
M1Þ. The lower bound

value of 0.3 is used conventionally in most works on low Mach number preconditioning, but it is also a good
choice in the sense of Fig. 17, where the split functions become smooth when the value of 0.32 is used. In fact,
this version of AUSM-family schemes has been used quite satisfactorily and reported in several publications,
Fig. 16. Supersonic shock diffraction problem solved by AUSM+-up on a fine gird of 400 · 400 points. Left: O(h2); Right: O(h).
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such as [6,8–10,13,11,20]. Nevertheless, it would be desirable if this somewhat arbitrary preset value can be
avoided and Mco can be allowed as low as M1 may be, e.g., Mco = O(M1), rather than being bounded from
below by 0.3.

To achieve this goal, we employed the analysis of asymptotic series expansion for low Mach number to
derive proper scales required in the pressure and velocity diffusion terms.

3.1. Asymptotic analysis for low Mach number

One of the advantages unique to asymptotic analysis is that it reveals formally proper scalings as some
parameters go to their limits. In this study, we follow [19] to derive the limits of the compressible inviscid equa-
tions as the Mach number vanishes. First, the equations are non-dimensionalized by appropriate reference
quantities such that each non-dimensional variable remains of order unity. Denoting the reference quantities
with a subscript ‘‘*’’ and the dimensional quantities with an ‘‘overbar’’, we select ð�L�; �U �Þ to non-dimension-
alize ð�t;~�x;~�uÞ, and ð�q�; �a2�Þ to non-dimensionalize the thermodynamic variables, ð�p; �q;�eÞ. Note that it is proper
to choose �a� as a reference quantity for compressible flows since the speed of sound is related to the changes of
�p and �q.

There are two distinct time scales in low Mach number flows and they are characterized, respectively, by the
convection speed �U � and speed of sound �a�. They differ in fact by a factor of Mach number, M� ¼ �U �=�a�.
Hence, two time limits can be formulated to consider slow and fast unsteady motions, see [18], for example.
In this study, we are mainly concerned with the convergence behavior towards the steady-state solutions. In
such situations, the convergence rate is mainly controlled by the slowest wave propagation. Consequently, the
flow speed �U � is a rate-controlling factor and is chosen in the non-dimensionalization for the analysis of low
Mach number flows.

The resulting non-dimensional equations become, if M� ¼ �U �=�a�,
M + s c h eo m p u t a
oq
ot

þr � q~u ¼ 0; ð33Þ

oq~u
ot

þr � q~u~uþ 1

M2
�
rp ¼ 0; ð34Þ

oqE
ot

þr � quH ¼ 0. ð35Þ
Let us denote the vector of primitive variables by
Q ¼ ½q;~u; p�T. ð36Þ

For M* ! 0, we can seek solutions of the above systems via the following expansion of variables:
m e s ( f a = 1 ) .t i o n a l P h y s i c s 2 1 4 ( 2 0 0 6 ) 1 3 7 – 1 7 0 1 5 1
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Q ¼ Qð0Þ þM�Q
ð1Þ þM2

�Q
ð2Þ þ � � � ð37Þ
By substituting this expansion into the above-non-dimensional equations, it is easy to see that the first two
leading equations describe variations of pressure only:
rpð0Þ ¼ 0 ) pð0ÞðtÞ ð38Þ

and
rpð1Þ ¼ 0 ) pð1ÞðtÞ. ð39Þ

The other variables only begin to appear together with the second-order pressure p(2). Consequently, after
some algebraic manipulations and deductions, we can summarize the following results.

From Eqs. (38) and (39), the pressure is constant in space up to and including the first order, O(M*). Hence,
by absorbing p(1) into p(0), we have
pð~x; tÞ ¼ pð0ÞðtÞ þM2
�p

ð2Þð~x; tÞ þ � � � ð40Þ

The zeroth-order pressure changes only with time, indicating that the entire domain of interest is under com-
pression or expansion simultaneously at the same rate.

Because qE ¼ p
ðc�1Þ þ

M2
�
2
j~uj2 ¼ pð0Þ

ðc�1Þ þOðM2
�Þ, we find from the energy equation,
dpð0Þ

dt
þ cpð0Þr �~uð0Þ ¼ 0. ð41Þ
Integrating over the domain of interest X, we get
d ln pð0Þ

dt
þ c
jXj

Z
oX
~uð0Þð~x; tÞ �~n dS ¼ 0 ð42Þ
in which the Gauss theorem has been applied in the integral. This result implies that p(0)(t) can be obtained by
only knowing the fluid velocity crossing the boundary of the domain together with a known initial value of
p(0)(0).

The zeroth-order velocity, ~uð0Þð~x; tÞ, is related to the second-order pressure via the momentum equation,
o~uð0Þ

ot
þr �~uð0Þ~uð0Þ þ 1

qð0Þ rpð2Þ ¼ 0. ð43Þ
The zeroth-order density follows from the continuity equation with the known ~uð0Þ,
oqð0Þ

ot
þr � qð0Þ~uð0Þ ¼ 0. ð44Þ
As a result, the quantities p(2), q(0) and~uð0Þ have to be solved simultaneously, with appropriate boundary and
initial conditions.

Consequently, we arrive at the following remarks:

R1. Since p(0)(t), this result is clearly not valid for the shock tube problems where the zeroth-order solution is
not spatially constant. Hence, the numerical scheme developed for low Mach number situations is not suitable
for the shock tube problems. In fact, the basic scheme given in the previous section should be used even
though the flow speed in the entire domain may be very low, as in the cases of slowly moving contact/shock,
see Figs. 11–13.

R2. Even though p(0)(t), the zeroth-order density and internal energy can be spatially varying, i.e., qð0Þð~x; tÞ, as
clearly implied in Eq. (44). Moreover, this pressure p(0)(t) is decoupled from the equation of the state, it instead
is determined from the energy equation with the constraint on the divergence of velocity. Therefore, acoustic
waves are removed from the system of equations, as in the case of incompressible flows.

R3. The second-order pressure solution pð2Þð~x; tÞ acts as a source to the convection of the zeroth-order
velocity field. Hence, if a numerical method gives spatial fluctuations in pressure on the order of M*, rather
than M2

� in the low Mach number limit, then inaccurate solutions will develop in the form of ~uð0Þ, q(0) and
e(0).
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R4. As noted above, when the fast motion characterized by the speed of sound �a�, instead of �U �, is included,
the time derivatives are decreased by a factor of M* [18]. Hence, the first-order pressure fluctuation is now
both time- and space-dependent, i.e., pð1Þð~x; tÞ. As expected, this pressure is governed by the acoustic wave
equation.

3.2. AUSM+-up for all speeds

The objective of the present study is to develop a new scheme that is uniformly valid for all speed regimes.
Let us now consider the basic scheme described earlier under the limit of vanishing Mach number. Again,
define
ML=R ¼ �uL=R
�a1=2

¼
�U �uL=R
�a�a1=2

¼ M�M̂L=R; M� ¼
�U �

�a�
; M̂ ¼ u

a
. ð45Þ
Note that since u and a are O(1), hence M̂ ¼ Oð1Þ and ML/R = O(M*). That is, for low Mach number flows,
both M* and ML/R ! 0. Now, using the split functions Mþ

ð4ÞðMLÞ and M�
ð4ÞðMRÞ, we obtain expressions in the

limit of ML/R ! 0,
M1=2 ¼ Mþ
ð4ÞðMLÞ þM�

ð4ÞðMRÞ þMp ¼
1

2
ðML þMRÞ 1� 1

2
ð1� 8bÞðML �MRÞ þOðM3Þ

� �
þMp. ð46Þ
Here, the added pressure diffusion Mp is based on the previous expression, Eq. (21), but is made more general
by inserting an extra scaling term M�m

� ,
Mp ¼ �xð �MÞM�m
�

pR � pL
q1=2a

2
1=2

; ð47Þ
where xð �MÞ ¼ Kp maxð1� r �M2Þ ¼ Oð1Þ.
If b = 1/8, then the interface velocity is simply evaluated by a simple average of ML and MR up to OðM3

�Þ,
besides Mp. It is interesting to note that this choice of b was suggested previously under a very different cri-
terion [16].

Using Eq. (45), the interface Mach number in Eq. (46) becomes, as M* ! 0,
M1=2 ¼
1

2
ðML þMRÞ � xð �MÞM�m

�
�pR � �pL
�p1=2a21=2

¼ 1

2
M�ðM̂L þ M̂RÞ � xð �MÞM�m

�
pR � pL
p1=2a

2
1=2

. ð48Þ
For m P 0, the pressure diffusion is the leading term in M1/2, hence the mass flux _m1=2.
Similarly, we find the pressure flux for |M| 6 1,
�p1=2 ¼ 1
2
ð�pL þ �pRÞ � 1

2
½DpðMRÞ�pR � DpðMLÞ�pL� þ �pu; ð49Þ
where
DpðMÞ ¼ M
2
½ð3þ 4aÞ � ð1þ 8aÞM2 þ 4aM4�; �3=4 6 a 6 3=16. ð50Þ
Noticing that care is taken in this section to distinguish the dimensional quantities, denoted with an ‘‘over-
bar’’, from the non-dimensional ones. Generalizing Eq. (26) by introducing an unspecified function u,
�pu ¼ �uðML;MRÞð�qL þ �qRÞ�a1=2Mn
�ð�uR � �uLÞ; ð51Þ
where the function u(ML,MR) is to be determined later. Again the scaling term Mn
� has been inserted for this

analysis to allow a proper scaling to be determined later. It is anticipated that n > 0 so that �pu remains
bounded as M* ! 0. In our previous studies, the parameter a has been set equal to a constant of 3/16. How-
ever, we also wish to have a possibility of having a more suitable value of a for the low speed regime. To
achieve this, we define
a ¼ �3
4
þ âðMÞ; ð52Þ
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where we require that
â ¼ 15
16

8jM j P 1 ð53Þ
so that the value of 3/16 is returned for a. Observing Eqs. (50) and (52), one may require that â be small when
M = O(M*) � 1. Here, we consider the limiting case when M � 1 and write
a ¼ �3
4
þMl

�gðM̂Þ; l > 0; ð54Þ
where gðM̂Þ ¼ Oð1Þ > 0 so that the monotonicity constraint (given in [16]) is met. Also, l > 0 is required such
that a remains bounded as M* ! 0. Substituting Eq. (54) into Eq. (50) gives the leading term of Dp,
DpðMÞ ¼ Mlþ1
� D̂pðM̂Þ þOðM3

�Þ; D̂pðM̂Þ ¼ Oð1Þ. ð55Þ

Hence,
�p1=2 ¼ 1
2
ð�pL þ �pRÞ þ �pu þ 1

2
Mlþ1

� ½D̂pðM̂LÞM̂L�pL � D̂pðM̂RÞM̂R�pR� þOðM3
�Þ. ð56Þ
After non-dimensionalization as described earlier p ¼ �p=�q��a2�, the interface pressure becomes,
p1=2 ¼ 1
2
ðpL þ pRÞ �Mnþ1

� uðML;MRÞðqL þ qRÞa1=2ðuR � uLÞ þ 1
2
Mlþ1

� ½D̂ðM̂LÞM̂LpL � D̂ðM̂RÞM̂RpR�
þOðM3

�Þ; l; n > 0. ð57Þ
Finally, we are ready to evaluate the mass, momentum and energy fluxes at the interface 1/2 as follows. First,
let
_̂m1=2 ¼ a1=2qj=jþ1

1

2
ðM̂j þ M̂jþ1Þ �M�ð1þmÞ

� K̂p1=2ðpjþ1 � pjÞ
� �

; ð58Þ
where
K̂p1=2 ¼ xð �MÞ=ðq1=2a
2
1=2Þ; ð59Þ
and as in Eq. (9),
qj=jþ1 ¼
qj if ½� � �� of Eq. (58) > 0;

qjþ1 otherwise.

(
ð60Þ
Then,
�F ð1Þ
1=2 ¼ ð�q��u�Þf ð1Þ

1=2 ¼ ð�q��u�Þ _̂m1=2; ð61Þ

�F ð2Þ
1=2 ¼ ð�q��u2�Þf

ð2Þ
1=2 ¼ ð�q��u2�Þ _̂m1=2u1=2 þ

p1=2
M2

�

� �
; ð62Þ

�F ð3Þ
1=2 ¼ ð�q��u��a2�Þf

ð3Þ
1=2 ¼ ð�q��u��a2�Þ _̂m1=2H 1=2. ð63Þ
Again, the quantities (u1/2,H1/2) are convected and are defined in the same fashion as q1/2 in Eq. (60). It is
noted that the factor M2

� in the pressure term is due to the fact that p1/2 has been non-dimensionalized by �a2�.
Substitution of the above equations into the semi-discrete equations written in the finite-volume form,
Dx
d

dt
qþ Df ¼ 0; ð64Þ
and using the series expansion given in Eq. (37), we obtain, after some lengthy algebraic manipulations, a sys-
tem of semi-discrete equations that are valid forM* ! 0 and specific for the numerical fluxes AUSM+-up. The
resulting equations are somewhat involved and we shall only give the following summary.

Let us now consider the case when m = n = 1.
A discrete version of the Laplacian equation for the pressure field holds for the zeroth and first-order solu-

tions from the continuity equation. Combining both continuity and momentum equations yields, for arbitrary
states of (q,u,e) and M* ! 0,
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DpðlÞj ¼ pðlÞjþ1 � pðlÞj ¼ 0; l ¼ 0; 1; 8j. ð65Þ
This implies pj = pj� 1 = pj+1 "j for the first two orders of the series in p. That is, the pressure is constant in
space up to and including O(M*). Hence, we have the expansion of p in the discrete system,
pð~x; tÞ ¼ pð0ÞðtÞ þM2
�p

ð2Þð~x; tÞ þ � � � ð66Þ

This also implies that the solution is free of odd–even oscillations up to OðM2

�Þ.
The energy equation does not yield any new information to alter the above result, as in the case of contin-

uum system.
Hence, Eq. (66), resulting from our numerical scheme, is consistent with the theoretical result, Eq. (40) of

the continuous system. The implication is that the current scheme will hold its accuracy consistently for com-
putations of low Mach number flows because it does not introduce an error of O(M*). But this is not true for
the original AUSM+ scheme [16], as evident later in Fig. 24.

Interestingly, one can find that the discrete equations are the counterpart of the continuous equations, but
with added diffusion terms.

Lemma. The discrete system derived above for M* ! 0 is a consistent, to the order of Dx, and dissipative
approximation to the continuum system, i.e.,
oqð0Þ

ot
þr � qð0Þ~uð0Þ ¼ o

oxk
l
opð2Þ

oxk

� �
; ð67Þ
where the dissipation coefficient
l ¼ OðDxÞ > 0; ð68Þ

and is independent of M*. The dissipation is directly related to the spatial variation of the second-order pressure

expansion p(2). The proof is given in Appendix A.

Since n = 1, the combination of Mn
� in p1/2 and the speed of sound is effectively equivalent to the use of

numerical speed of sound, but only used in the velocity diffusion term p1/2 and nowhere else. It also reveals
that the concept of numerical sound suggested in [8] is sound, but how and where it should be applied was
done heuristically, short of a formal derivation.

Now we are reminded that the above derivation is valid forM* ! 0 and the basic scheme given in Section 2
should return when M* = O(1). The insertion of terms like M�m

� and M�n
� in Mp and pu is only required as

M* ! 0 and these terms should become exactly unity as M* = O(1). Since the scaling function fa as given
in Eq. (14) conveniently fulfills this requirement, we shall use fa to take place of M* in Mp, pu and a so that
the new AUSM+-up becomes valid for all speeds.

3.3. Algorithm: AUSM+-up for all speeds

The final algorithm is given as follows. First, one defines,
ML=R ¼ uL=R
a1=2

; ð69Þ
where a1/2 is defined either by Eq. (30) or a simple average of aL and aR. For multi-dimensional flows,
u = V Æ n, with n being the unit normal vector of the cell face under consideration.
�M2 ¼ ðu2L þ u2RÞ
2a21=2

; ð70Þ

M2
o ¼ minð1;maxð �M2;M2

1ÞÞ 2 ½0; 1�; ð71Þ
faðMoÞ ¼ Moð2�MoÞ 2 ½0; 1�; ð72Þ

M1=2 ¼ Mþ
ð4ÞðMLÞ þM�

ð4ÞðMRÞ �
Kp

fa
maxð1� r �M2; 0Þ pR � pL

q1=2a
2
1=2

; q1=2 ¼ ðqL þ qRÞ=2; ð73Þ
where 0 6 Kp 6 1 and r 6 1.



156 M.-S. Liou / Journal of Computational Physics 214 (2006) 137–170
Then, the mass and pressure fluxes are readily defined
_m1=2 ¼ a1=2M1=2

qL if M1=2 > 0;

qR otherwise

�
ð74Þ
and
p1=2 ¼ Pþ
ð5ÞðMLÞpL þP�

ð5ÞðMRÞpR � KuP
þ
ð5ÞP

�
ð5ÞðqL þ qRÞðfaa1=2ÞðuR � uLÞ ð75Þ
using the parameters
a ¼ 3

16
ð�4þ 5f 2

a Þ 2 � 3

4
;
3

16

� �
;

b ¼ 1

8
;

ð76Þ
with 0 6 Ku 6 1.
Finally, the whole flux is(
f1=2 ¼ _m1=2

~wL if _m1=2 > 0;

~wR otherwise;
þ p1=2. ð77Þ
It is reminded that only in the pressure flux is the numerical speed of sound used, which is scaled by the factor
fa, but nowhere else.

This scheme is still designated as AUSM+-up since it incorporates both the velocity and pressure terms into
AUSM+ scheme and the basic scheme is only a special version obtained by simply setting fa = 1.

As noted previously, the basic scheme should be invoked when we consider the shock-tube type of problems
in which the leading pressure term is not spatially uniform, even though the fluid velocity may be small, see the
examples presented above.

In all calculations, we set Kp = 0.25, Ku = 0.75 and r = 1.0 (except in Fig. 9 shown before).

4. Results

In this section, we shall present numerical results to address the issues on robustness and accuracy for a
variety of 2D and 3D flow problems and flow speed regimes, on a variety of grid topologies, including the
chimera grid. Also, to verify that the proposed scheme holds when it is combined with various time-integration
methods and codes, we employed four different CFD codes, including the OVERFLOW [28] and Swift [29]
codes, with six different integration schemes, such as implicit ADI, implicit LU, explicit 4-stage Runge–Kutta
with residual smoothing, and explicit 2-stage Runge–Kutta schemes. The implicit ADI and explicit 4-stage
schemes have an option of turning on the local preconditioner of Weiss–Smith [3].

For all viscous calculations, the flow is assumed to be fully turbulent. The turbulence models used in this
study include several popular ones such as Spalart–Allmaras’s (S–A) [32], Mentor’s k–� (SST) [30], and Wil-
cox’s k–x [31] models.

The calculations were carried out using the same set of parameters associated with the above-mentioned
time marching procedures, while no attempts were made to find an optimal set of parameters. Most of the
2D and 3D cases were solved with the OVERFLOW code and the turbomachinery problem was computed
using the Swift code. To extend the spatial accuracy from that of first order and maintain monotonicity,
we used the standard limiter, see [33].

A useful indicator adopted in this study for measuring the robustness of the scheme is the convergence rate.
That is, a robust scheme should maintain the same convergence rate, irrespective of Mach numbers or other
flow conditions, and should remain stable with different time integration schemes.

4.1. 2D cylinder

First, we show in Fig. 18 the pressure contours of a third-order accurate solution over a blunt body with
M1 = 10. Not only is the solution free of carbuncle phenomena, but also the pressure contours are smooth,



Fig. 18. Blunt body problem, M1 = 10.
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specifically near the stagnation point and sonic line regions. The convergence history also exhibits a continu-
ous drop in residual.

4.2. Shuttle external tank

This is an axisymmetric Shuttle External Tank geometry with a sharp nose, a blunt base and a tiny notch at
the mid-length. There is a significant zone of flow separation in the base. The grid number is 88 · 60. The free
stream Reynolds number is 10,000 and the boundary layer is assumed tripped at the leading edge. Hence, the
flow is treated as fully turbulent and described by the S–A model. We have tested conditions from low Mach
number, transonic, to supersonic speeds. This case was used previously [8,9] to study the effectiveness of
numerical speed of sound and preconditioning matrix. We again used this case to test the new scheme for
its performance in terms of accuracy and convergence. In all calculations of this problem, we made 200 steps
for each of two coarser grids prior to the finest grid, on which 3000 more steps were continued unless noted
otherwise.

Displayed in Fig. 19 are the convergence histories of two schemes for various Mach numbers: (1) AUSM+

[16] and (2) AUSM+-up. The Weiss–Smith preconditioner was used in both cases. The residuals of the first
scheme for the low Mach-number solutions stall after a drop of three to four orders of magnitude. These
drops, although not especially admirable, would have been acceptable in many situations. However, a close
Fig. 19. Comparison of convergence rates between AUSM+ and AUSM+-up. Left: AUSM+; Right: AUSM+-up.
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examination of the solution reveals that it is completely unacceptable even after additional 3000 steps, as
shown in Fig. 20. It appears that there is a false boundary (exactly aligned with a grid line) at which informa-
tion is unable to pass through. Hence, here is an example showing that one should be cautious about assessing
the convergence of solution when reading only the residual history in the case of low Mach-number solutions.
Furthermore, we show in Fig. 20 the AUSM+-up solution at N = 1600 steps at which the residual has been
dropped to the level approximately equal to that of AUSM+, at N = 6400. The solution now is well behaved
and is as good as the final solution at N = 3400 (hence, not included), at which the residual has been further
reduced by two orders.

A further examination of convergence histories reveals some interesting characteristics of the new scheme,
as displayed in Fig. 21.

(1) A monotonic convergence is observed for all Mach numbers.
(2) A Mach-number independent convergence rate is observed in the low Mach number regime, with a

nearly identical rate for M1 6 0.5. It may be noted that the stall in residual in the M1 = 0.001 case
towards the end is due to the fact that the absolute residual for this very low Mach number has already
reached the machine truncation error. (A better way of handling the low Mach number calculations
might be by subtracting the free stream pressure in the code.)

(3) Similarly, the convergence for transonic cases is also essentially Mach number independent.

In the previous study [9], it was found that a preconditioning matrix must be used in order to get a stable
solution for M1 6 0.1. It was discovered in this study that the current scheme AUSM+-up actually remained
Fig. 20. Pressure contours for the shuttle external tank problem for M1 = 0.01. Top: AUSM+; Bottom: AUSM+-up.



Fig. 21. Convergence history by AUSM+-up.Fig. 22. Convergence histories of variousM1using a non-preconditioned LU inte

forM1= 0.01.
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stable without using the preconditioning matrix, although the convergence stalled after having dropped by at
least four orders as displayed in Fig. 22, similar to what appears in Fig. 19 with the AUSM+. However, the
solution is completely different from that of AUSM+, and in fact gives a correct behavior and smooth con-
tours, completely due to proper rescaling of the flux formula for low speeds. Furthermore, the pressure coef-
ficients on the surface of the tank at M1 = 0.01 by both the preconditioned and non-preconditioned time
integration schemes are compared in Fig. 23; both results are essentially identical. This finding is important
in the sense that reliable solutions can be obtained even without resorting to a local preconditioner. Hence,
the current scheme is a reliable one, not only for calculating low Mach number flows but also throughout
the entire speed regimes.

To summarize the validity of the present scheme, we show in Fig. 24 the pressure differences in the flow-
fields with respect to the free-stream Mach number. Recall that differences in pressure among various spatial
locations, according to the asymptotic analysis, should be proportional to M2

1 only. The agreement of the
numerical results with that of asymptotic analysis is astonishing; the scheme accurately predicts that the pres-
sure variations (in space) are proportional to the M2

1. This trend continues up to M1 = 1 before a shock
forms in the flowfield, even though the asymptotic analysis is meant to be valid only for low Mach number.
It is reminded that the computations were carried out with the Navier–Stokes equations. This implies that the
viscous terms play little role in altering the pressure variations established by the Euler equations, also con-
firmed by the asymptotic analysis so long as M* 	 1/Re. This condition is met for all the cases considered,
including the case of the smallest Mach number M* = O(10�3).
gration scheme and AUSM+-up and pressure contours



Fig. 23. Comparison of pressure distributions of AUSM+-up between using non-preconditioned LU and preconditioned integration
schemes.

Fig. 24. Pressure variations vs. M1 demonstrating the correct scaling of pressure variations in space begins only in the O(M2) series
expansion.
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It is noted that viscous grid effect can be taken into account in the preconditioning matrix in terms of the
Reynolds number based on the streamwise grid spacing Dx, denoted as ReDx. A simple and robust procedure
for including the effect of viscosity and grid aspect ratio effects has been suggested in [35]. This viscous scaling
becomes dominant when M � 1/ReDx. In the present calculations, no such viscous scaling was employed in
the preconditioning matrix. However, the convergence histories, particularly those for both M1 = 10�2

and 10�3, do not appear deteriorated.

4.3. Axisymmetric bump

Transonic flows over an axisymmetric bump (or dubbed as Bachalo–Johnson bump) was simulated for
Re1 = 2.66 · 106, M1 = 0.875 and 0.925 on an 181 · 101 grid. Experiments for this flow model were con-
ducted to provide validation data for turbulence models development in a flowfield free from tunnel wall inter-
ference, three-dimensional effects and excessive unsteadiness [34]. Calculations with various turbulence models



M.-S. Liou / Journal of Computational Physics 214 (2006) 137–170 161
were obtained; we shall only present in this paper the results from the two-equation SST model. Fig. 25 shows
that the rate of convergence again is quite insensitive to the Mach number in spite of a considerable size of
separated region, which results in a strongly curved shock at the foot. Fig. 26 shows that the calculated surface
pressure distributions and shock locations agree very well with the measured data at both flow conditions.

4.4. Annular turbine vane

Numerical solution was carried out to compare with the data from an annular turbine vane experiment by
Goldman and McLallin [36], on a 97 · 37 · 32 grid, around the blade, blade-to-blade and spanwise, respec-
tively. The Swift code [29] was used with a 4-stage Runge–Kutta scheme accelerated with a residual smoothing
technique. The k–x model was applied. Fig. 27 shows the comparison of the spanwise distribution of flow
angles downstream of the vane. The AUSM+-up scheme gives an excellent agreement with the data, while
the centered scheme (JST) [38] yields a rather flat distribution and misses the peaks, indicating an excessive
dissipation. Fig. 28 displays smooth pressure contours around the blade. Additional results and discussion
for turbomachinery applications can be found in [6].

4.5. Wingbody

Turbulent flows using the S–A model over a wing-body configuration were calculated. The flow conditions
are: M1 = 0.8, Re1 = 0.166 · 106 and angle of attack of two degrees. Fig. 29 shows the geometry together
Fig. 25. Axisymmetric bump using SST model at Re1 = 2.66 · 106 and M1 = 0.875 and 0.925. Top: convergence history; Bottom:
pressure contours for the M1 = 0.925 flow.



Fig. 26. Pressure distribution for an axisymmetric bump using SST model atRe1= 2.66

Fig. 27. Comparison of flow angles by AUSM+-up and centered (JST) schemes for annular turbine vane.
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with the sting, and the chimera (overset) grid which consists of seven subgrids, totaling 1.1 million grid points.
Fig. 30 presents the pressure coefficients at various spanwise locations predicted by the AUSM+-up, showing
excellent agreement with the measured data [39]. Moreover, the pressure coefficients along the body, shown in
·106andM1= 0.925 and 0.875.



Fig. 28. Pressure contours for annular turbine vane.

Fig. 29. Chimera grids used for solution of flow over a wingbody configuration.
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Fig. 31, again exhibits excellent agreement with the data, even in the wing root region where a sharp geomet-
rical variation is encountered.

Also, Fig. 32 displays a well-behaved convergence history, reducing the residual error by more than five
orders of magnitude in 800 steps. The convergence of AUSM+-up appears to be slightly improved over that
of AUSM+, also in the transonic regime.

4.6. High-lift trap-wing

Finally, we considered a 3D low speed flow over a high-lift three-element trap-wing configuration with
wind-tunnel effects [37]. The flow conditions are: M1 = 0.1498, Re1 = 14.7 · 106 and angle of attack of
20�. The geometry consists of a body pod, a wing, a full-span slat, a full-span flap and the tunnel walls, as
displayed in Fig. 33. Rogers et al. [40] have performed an extensive numerical study of the aerodynamic char-
acteristics of this configuration using the preconditioned version of the Roe scheme in the OVERFLOW code,



Fig. 30. Pressure distribution on the wing of a wingbody configuration using S–A model at M1 = 0.8, a = 2�, and Re1 = 0.166 · 106.
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Fig. 31. Pressure distribution on the body of a wingbody configuration using S–A model at M1 = 0.8, a = 2�, and Re1 = 0.166 · 106.
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Fig. 33. Trap wing model in a wind tunnel, the tunnel grid is plotted every fourth grid point.

Fig. 32. Convergence history for a wingbody configuration using S–A model at M1 = 0.8, a = 2�, and Re1 = 0.166 · 106.
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using the S–A one-equation model. In the present study, we used the AUSM+-up instead. The chimera grid
was composed of 14 subgrids with a total of 8.7 million grid points. The pressure distributions by the AUSM+-
up are seen in Fig. 34 in excellent agreement with the experimental data at various spanwise locations.

This case, along with others shown above, at least confirms that despite the multitude of complexities that
may result from grid and turbulence modeling issues, a reliable numerical flux scheme can contribute to a reli-
able prediction of complex 3D flowfields.

5. Concluding remarks

A new version of the AUSM-family schemes, based on the low Mach number asymptotic analysis, has been
described in this paper. The resulting scheme, called AUSM+-up, has been demonstrated to be a reliable and
effective one, not only for low Mach number, but also over the entire speed regimes, for a wide variety of flow
problems over different geometries and grids. The solutions converge in a Mach-number-independent fashion
and are accurate, in excellent agreement with corresponding measurements or analytical results.



Fig. 34. Pressure distributions on three wing elements at various spanwise locations.
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In addition, we showed that the AUSM+-up possesses the following attributes: (1) exact capturing of a con-
tact discontinuity, (2) exact capturing of a normal shock discontinuity with an entropy-satisfying property, (3)
positivity preserving property, (4) solution free of carbuncle phenomenon (5) accurate solution of slowly mov-
ing contact and shock discontinuities, and (6) smooth transition through the sonic point.
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Appendix A

In this appendix, we provide an expanded derivation for the lemma given in Section 3.2.
For the case of m = n = 1, we list the equations useful for the derivation
_̂m1=2 ¼ a1=2qj=jþ1

1

2
ðM̂j þ M̂jþ1Þ �M�2

� K̂p1=2ðpjþ1 � pjÞ
� �

; ðA:1Þ
where the leading term is associated with the pressure diffusion as M* ! 0. The coefficient K̂p1=2 can be further
expanded as
K̂p1=2 ¼ Kp=ðq1=2a
2
1=2Þ ¼ K̂ð0Þ

p1=2
þM�K̂ð1Þ

p1=2
þOðM2

�Þ. ðA:2Þ
Consequently, the mass flux _̂m1=2 has the leading term
_̂m1=2 ¼
1

M2
�
að0Þ1=2q

ð0Þ
j=jþ1K̂

ð0Þ
p1=2

D1=2p þO
1

M�

� �
¼ 1

M2
�
_̂mð0Þ
1=2 þO

1

M�

� �
; ðA:3Þ
where we let D1/2p = pj+1 � pj and similarly D�1/2p = pj � pj� 1.
Furthermore, the leading fluxes become
�F ð1Þ
1=2 ¼ ð�q��u�Þf ð1Þ

1=2 ¼
1

M2
�
ð�q��u�Þ _̂mð0Þ

1=2 þ � � � ; ðA:4Þ

�F ð2Þ
1=2 ¼ ð�q��u2�Þf

ð2Þ
1=2 ¼

1

M2
�
ð�q��u2�Þ _̂mð0Þ

1=2u1=2 þ
1

2
ðpjþ1 þ pjÞ

� �
þ � � � ; ðA:5Þ

�F ð3Þ
1=2 ¼ ð�q��u��a2�Þf

ð3Þ
1=2 ¼

1

M2
�
ð�q��u��a2�Þ _̂m

ð0Þ
1=2H

ð0Þ
1=2 þ � � � ðA:6Þ
Notice that the quantities (qj/j+1,u1/2,H1/2,a1/2) are defined in the same manner as before.
Substitution of the above equations into the semi-discrete equations,
Dx
d

dt
qþ f1=2 � f�1=2 ¼ 0 ðA:7Þ
yields that the time-dependent terms are of higher order and the leading terms of Oð1=M2
�Þ are the spatial dif-

ference terms, as in the continuum case. That is, the continuity and momentum equations produce
að0Þ1=2q
ð0Þ
j=jþ1K̂

ð0Þ
p1=2

D1=2p � að0Þ�1=2q
ð0Þ
j�1=jK̂

ð0Þ
p�1=2

D�1=2p ¼ 0 ðA:8Þ
and
að0Þ1=2q
ð0Þ
j=jþ1u

ð0Þ
1=2K̂

ð0Þ
p1=2

D1=2p � að0Þ�1=2q
ð0Þ
j�1=ju

ð0Þ
�1=2K̂

ð0Þ
p�1=2

D�1=2p þ 1
2
ðD1=2p þ D�1=2pÞ ¼ 0. ðA:9Þ
Combining both equations gives, for an arbitrary velocity field u±1/2,
D1=2pð0Þ ¼ pð0Þjþ1 � pð0Þj ¼ 0 ðA:10Þ
and
D�1=2pð0Þ ¼ pð0Þj � pð0Þj�1 ¼ 0 8j. ðA:11Þ
Hence, we get
pð0Þj ðtÞ; 8j; () pð0Þj ¼ constant in space. ðA:12Þ
This exactly reproduces the result of the continuum system for M* ! 0. It can be shown in the same algebraic
procedure that
D�1=2pð1Þ ¼ 0 and pð1Þj ðtÞ. ðA:13Þ
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It is anticipated that the next expansion of series will involve the zeroth-order convection velocity u(0) simul-
taneously with the second-order pressure p(2) in the mass flux _̂m�1=2. After some straightforward but somewhat
lengthy algebraic manipulations, we get
Dx
oqð0Þ

j

ot
þ qð0Þ

j=jþ1

1

2
ðuð0Þj þ uð0Þjþ1Þ � að0Þ1=2K̂

ð0Þ
p1=2

D1=2pð2Þ
� �

� qð0Þ
j�1=j

1

2
ðuð0Þj þ uð0Þj�1Þ � að0Þ�1=2K̂

ð0Þ
p�1=2

D�1=2pð2Þ
� �

¼ 0.

ðA:14Þ
The spatial difference term can be considered as a second-order accurate discrete approximation to the deriv-
ative by taking Dx ! 0. Hence,
oqð0Þ

ot
þ o

ox
qð0Þuð0Þ ¼ o

ox
l
opð2Þ

ox

� �
þOðDx2Þ; ðA:15Þ
with
l ¼ qð0Það0ÞK̂ð0Þ
p Dx > 0; ðA:16Þ
where the coefficient is positive definite. Hence, the discrete system is a dissipative one. The coefficient is a
function of the zeroth-order thermodynamics variables only and is independent of characteristic Mach num-
ber M*.

The above has completed the proof of the lemma.
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